Author Affiliations
Abstract
1 School of Physics, Henan Normal University, Xinxiang 453007, China
2 MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4 Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
5 e-mail: phyzhxd@gmail.com
6 e-mail: tanya@nankai.edu.cn
7 e-mail: zl-zhu@htu.edu.cn
Higher-order exceptional points (EPs), which appear as multifold degeneracies in the spectra of non-Hermitian systems, are garnering extensive attention in various multidisciplinary fields. However, constructing higher-order EPs still remains a challenge due to the strict requirement of the system symmetries. Here we demonstrate that higher-order EPs can be judiciously fabricated in parity–time (PT)-symmetric staggered rhombic lattices by introducing not only on-site gain/loss but also non-Hermitian couplings. Zero-energy flatbands persist and symmetry-protected third-order EPs (EP3s) arise in these systems owing to the non-Hermitian chiral/sublattice symmetry, but distinct phase transitions and propagation dynamics occur. Specifically, the EP3 arises at the Brillouin zone (BZ) boundary in the presence of on-site gain/loss. The single-site excitations display an exponential power increase in the PT-broken phase. Meanwhile, a nearly flatband sustains when a small lattice perturbation is applied. For the lattices with non-Hermitian couplings, however, the EP3 appears at the BZ center. Quite remarkably, our analysis unveils a dynamical delocalization-localization transition for the excitation of the dispersive bands and a quartic power increase beyond the EP3. Our scheme provides a new platform toward the investigation of the higher-order EPs and can be further extended to the study of topological phase transitions or nonlinear processes associated with higher-order EPs.
Photonics Research
2023, 11(2): 225
Xinxin Li 1,2,3Zhen Deng 1,3,4,*Jun Li 1,3Yangfeng Li 1,3[ ... ]Hong Chen 1,3,6,7
Author Affiliations
Abstract
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4 The Yangtze River Delta Physics Research Center, Liyang 213000, China
5 Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China
6 Songshan Lake Materials Laboratory, Dongguan 523808, China
7 e-mail: hchen@iphy.ac.cn
An internal photoemission-based silicon photodetector detects light below the silicon bandgap at room temperature and can exhibit spectrally broad behavior, making it potentially suited to meet the need for a near-infrared pure Si photodetector. In this work, the implementation of a thin Au insertion layer into an ITO/n-Si Schottky photodetector can profoundly affect the barrier height and significantly improve the device performance. By fabricating a nanoscale thin Au layer and an ITO electrode on a silicon substrate, we achieve a well-behaved ITO/Au/n-Si Schottky diode with a record dark current density of 3.7×10-7 A/cm2 at -1 V and a high rectification ratio of 1.5×108 at ±1 V. Furthermore, the responsivity has been obviously improved without sacrificing the dark current performance of the device by decreasing the Au thickness. Such a silicon-based photodetector with an enhanced performance could be a promising strategy for the realization of a monolithic integrated pure silicon photodetector in optical communication.
Photonics Research
2020, 8(11): 11001662
Author Affiliations
Abstract
1 Key Laboratory of Optoelectronic Technology and Systems (Education Ministry of China), Chongqing University, Chongqing 400044, China
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Despite the tremendous awareness of Rayleigh scattering characteristics and its considerable research interest for numerous fields, no report has been documented on the dynamic characteristics of spectrum evolution (SpE) and physical law for Rayleigh scattering from a micro perspective. Herein, the dynamic characteristics of the SpE of Rayleigh scattering in a one-dimensional waveguide (ODW) is investigated based on the quantum theory and a SpE-model of Rayleigh backscattering (RBS) source is established. By means of simulation, the evolution law which represents the dynamic process of the spectrum linewidth at a state of continuous scattering is revealed, which is consistent with our previous experimental observation. Moreover, an approximate theoretical prediction of the existing relationship between the spectrum linewidth of RBS source and the transmission length in ODW is proposed, which theoretically provides the feasibility of constructing functional devices suitable to ascertain laser linewidth compression. The designed experimental scheme can be implemented provided the assumptions are fulfilled. In addition, a theoretical model of the micro-cavity structure to realize the deep compression of laser linewidth is proposed.
scattering Rayleigh spectrum evolution linewidth functional device 
Opto-Electronic Advances
2019, 2(8): 08190012

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!